
A Survey of Dual Data Cache Systems

Zivojin Sustran Sasa Stojanovic Goran Rakocevic* V.M. Milutinovic Mateo Valero**

Department of Computer Engineering
School of Electrical Engineering

University of Belgrade
11000, Belgrade, Serbia

{zika, stojsasa, vm}@etf.bg.ac.rs

(*)Mathematical Institute of the
Serbian Academy of Sciences and

Arts
11000, Belgrade, Serbia

goran.rakocevic@gmail.com

(**)Departamento de Arquitectura
de Computadores

Universitat Politècnica de Catalunya
08034, Barcelona, Spain

mateo@ac.upc.edu

Abstract-Dual data cache (DDC) systems have attracted

considerable research effort in the past decade or so, with their
Divide et Impera tactic. DDC systems divide data according to
their access patterns and use different caching strategies on
them. In the first part of this paper, one possible classification
taxonomy, is proposed and described. The second part of this
paper represents a survey of the existing solutions classified
according to proposed criteria, presenting their organization,
benefits, shortcomings, and intended use.

INTRODUCTION

The disparity between processor and main memory
performance continues to grow and as a result there have
been proposed many techniques for hiding the latency of
memory accesses.

A large group of proposed solutions is based upon the dual
data cache (DDC) system [1][2][12], which tries to take
advantage of different patterns in data accesses. A DDC
system caches the data into two physically and/or logically
separated cache subsystems. The data with similar access
patterns are stored in the same cache subsystem and an
organization of each cache subsystem is optimized for the
corresponding type of a data access pattern. Partitioning the
data can be done at run time and/or compile time, and the
system can be implemented with or without possibility to
detect changes in the data access patterns. The DDC system
reduces the hit miss ratio of the classical cache system, while
occupying less silicon die area and consuming less power. If
the data access pattern is predictable, the DDC system can
also reduce latency of the read hit by intelligently prefetching
data.

The data pattern access can be determined based on the
type of locality that the data exhibit, the utilized data
structure, the segment of the main memory where the data is
stored, etc. Two types of localities, spatial and temporal, are
important for determining the data access pattern. If a
particular memory location is referenced at a particular time
and it is likely that a nearby memory location will be
referenced in the near future, the data item in that memory
location exhibits the spatial locality. If a particular memory
location is referenced at a particular time and there is high
probability to access the same memory location in near
future, the data in that memory location exhibits temporal
locality. In determining the data access pattern, it is useful to

know the data structure: scalar, vector, and complex. Access
to scalar data is similar to access to data that exhibit temporal
locality (particularly if the accesses happen in a loop), access
to vector data is similar to access to the data that express
spatial locality, and access to complex data cannot be
predicted easily. Several other terms, important for
determining the data access pattern, are presented in Table I.

This survey is mainly focused on comparing performance
evaluation of different solutions, because of indisputable
importance of cache performance. In modern systems, cache
memory occupies roughly one third of silicon die area, and
we try to present a possibility for reduction of the transistor
count in DDC. One viewpoint, which is especially important
in embedded and mobile systems, is concentrated on DDC
power consumption and energy dissipation.

The goal of this paper is to give a comprehensive insight
into the research area of DDC. It covers several different
approaches for splitting data cache in order to hide latency
delays. A taxonomy that defines possible classification
criteria is proposed. Existing solutions are presented in the
context of these criteria.

TABLE I
DEFINITION OF TERMS USED

Term Definition

Locality prediction table Locality prediction table is a history

table with information about the most

recently executed load/store

instructions used to predict the type of

locality of referenced data.

2D spatial locality Data that exhibit this type of locality if

they are stored in matrix data-type and

there is a high probability that in near

future memory access to the

neighboring element will happen.

Neighboring and OBL

algorithms

Algorithms used for prefetching data

that exhibit 2D and spatial locality.

Java processor Implementation of Java Virtual

Machine on FPGA chip.

A PROPOSAL FOR CLASSIFICATION OF DUAL DATA CACHE
SYSTEMS

In order to provide a wide and extensive view in the field
of DDC, possible criteria for classification are proposed. Our

choice of the classification criteria relies on the possibility to
classify all existing systems into the appropriate non-
overlapping subsets of systems.

The first criterion for classification is based on use type of
the processor, for which the cache system is being designed.
Types of use can be general or special-purpose. Under
general are classified those solutions used for arbitrary types
of applications and general-purpose computing, while under
special-purpose are classified those solutions that produce
better results for one type of application and/or embedded
computing. The general-purpose systems have a higher
demand for performance. The special-purpose systems a have
higher demand for reducing power consumption and a better
usage of die space.

The second criterion for classification is based on whether
the processor, for which the cache system is being designed,
will be a part of uniprocessor or multiprocessor system. The
reduction of cache size, through the use of the DDC system,
opens a possibility for more cores on a die in multiprocessor
systems.

The third criterion for classification is based on where is
placed the mechanism for determining the type of locality
that data exhibit. There are two possibilities: compiler-
assisted, if the type of locality is determined by use of
compiler and/or profiler, and compiler-not-assisted, if the
type of locality is determined in hardware or in another
system layer. This criterion shows whether the DDC system
can adapt to changes of data access patterns and how can the
system handle data that do not follow the expected access
pattern.

The classification criteria were chosen to reflect the
essence of the basic viewpoint of this research. The
classification tree was obtained by successive application of
the chosen criteria and it is presented in Figure 1. The leaves
of the classification tree are the examples (research efforts)
elaborated briefly later on, in the Existing Solutions section of
this paper.

EXISTING DUAL DATA CACHE SYSTEMS

For each class of DDC systems we present the existing
implementations, if any.

General Uniprocessor Compiler-Not-Assisted

The general uniprocessor compiler-not-assisted (GUN) is a
class of proposed solutions where data localities and caching
strategies are determined solely in hardware and where the
help of a compiler is not necessary. We present two solutions
only for this class, because they were published roughly at the
same time and they had an impact on every other solution.

1. The Dual Data Cache

Gonzalez, Aliagas, and Valero proposed in [1][12] a novel

data cache design for superscalar processors, named dual data
cache (DDC), at the Universitat Politècnica de Catalunya, in
order to resolve four main issues regarding data cache design:
large working sets, pollution due to non-unit strides,
interferences when the stride and the number of sets are not
co-prime, and prefetching. The DDC is a data cache
partitioned into two independent cache subsystems: one is
designed to exploit both spatial and temporal locality (named
the Spatial Cache) and the other one is designed to exploit
temporal locality (named the Temporal Cache), as depicted in
Figure 2. The sub-cache system where the missed data is
cached or whether not to cache the missed data, for every
cache miss, is determined using information contained in the
locality prediction table (LPT); if the information for a
particular instruction has not reached a "stable state" in the
LPT, the data will be placed in the default sub-cache system.
The authors have evaluated the DDC system with three
different types of benchmarks and the results show better
performance of the DDC system in comparison with the
conventional cache system of the same size, for benchmarks
that have memory references that exhibit both types of
locality. The proposed solution does not reduce power
consumption or transistor count of the conventional cache
system and the use of cache memory space can be reduced by
not allowing duplication of data in both temporal and spatial
sub-cache systems.

2. The Split Temporal/Spatial Data Cache

 Milutinovic, Markovic, Tomasevic, and Tremblay in [2]

present the split temporal/spatial (STS) cache system for
effective utilization of different types of locality in data

Figure 1: The classification three of Dual Data Cache systems. Legend: G/S – general vs. special purpose; U/M – uniprocessor vs. multiprocessor; C/N - compiler
assisted vs. hardware; GUC, GUN, GMC, GMN, SUC, SUN, SMC, SMN – abbreviation for eight classes of DDC. Description: The classification tree obtained by
successive application of the chosen criteria. Implication: The class of general uniprocessor compiler assisted DDC system does not have known implementations.

accesses; the research was done in the School of Electrical
Engineering at the University of Belgrade with the intention
of performance evaluation of the STS cache system,
comparatively with the conventional cache system. Similar to
the previously described cache system (DDC), the STS cache
system, illustrated in Figure 3, is divided into spatial and
temporal sub-cache systems, but instead of a large second
level cache used for the both sub-cache systems, a two times
smaller second level cache is used as the second level cache
for the temporal sub-cache system, while the spatial sub-
cache system has only one level. The sub-cache system where
the missed data is cached, for every cache miss, is determined
by a run-time algorithm, implemented in hardware, which
dynamically tags/retags block of data against their locality; a
compile time algorithm, which tags blocks of data based on
the data structure, and a profile-time algorithm, similar to the
run-time algorithm, are used to minimize the effect of a "cold
start" period. The performance evaluation was done with
ready-to-use traces, without the compile-time algorithm, and
the results show considerable performance gain over the
conventional cache system and a similar cache hit ratio; the
same authors in [3] show that this approach is also able to
reduce the complexity (die area occupied by the design) and
consequently power consumption. The proposed cache
system can be improved by adding a mechanism for detecting
and bypassing data that do not express any type of locality

and a mechanism for better utilization of the vector data that
has non-unit strides.

General Uniprocessor Compiler-Assisted

The general uniprocessor compiler-assisted (GUC) is a

class of proposed solutions where data localities and caching
strategies are determined in software and hardware. Help of
the compiler is necessary for solutions in this class.

3. The Northwestern Solution

Memik, Kandemir, Haldar, and Choudhary presented in [4]

the Northwestern solution (NS) for improving cache
performance using compiler and hardware techniques; the
research was performed at the Northwestern University with
the idea to investigate interaction between hardware and
software techniques to optimizes data locality. The NS uses
the compiler techniques for code areas that have regular data
access pattern and uses dedicated instructions to selectively
turn on/off the hardware base technique for code areas with
irregular data access pattern. The cache system consists of
conventional cache system, for caching data that do not

M
P

Figure 2: The Dual Data Cache system. Legend: CPU – central processing
unit; SC – spatial sub-cache; TC - temporal sub-cache; LPT – locality
prediction table. Description: The cache organization is divided into two
sub-cache systems: the temporal and the spatial sub-cache system.
Explanation: The cache system is split into a “temporal” sub-cache system
and “spatial” sub-cache system to allow use of different caching strategies
for the different types of locality that data exhibit. The data block is cached
in different sub-caches system based on an associated locality in the LPT.
The locality for each data block is determined by previous accesses to the
data block. Implication: The same data block can be cached in both sub-
cache systems.

Figure 3: The Split Temporal Spatial cache system. Legend: MM – main
memory; CPU – central processing unit; SC – spatial sub-cache with
prefetching mechanism; TC L1 and TC L2– the first and second level of the
temporal sub-cache; TAG – unit for dynamic tagging/retagging data.
Description: The cache organization is divided into two sub-cache systems:
the temporal and the spatial sub-cache system. The temporal sub-cache
system has two levels with one-word block size, while the spatial sub-cache
system has only one level with the usual block size and a hardware
implemented prefetching mechanism. Explanation: The cache system is split
into a “temporal” sub-cache system and “spatial” sub-cache system to allow
use of different caching strategies for the different types of locality which
data exhibit. The data block is cached in different sub-caches system based
on an associated tag. The tag for each data block is determined by previous
accesses to the data block. Implication: The data block only can change
sub-cache system if cache miss for that data block occurs.

SC TC L1

MP

Data to/from

CPU

Memory request

from CPU

TAG

MM

TC L2

exhibit spatial locality and have high access frequency, and
the small buffer, for caching data that exhibit spatial locality,
as illustrated in Figure 5. Data that do not exhibit spatial
locality and do not have high access frequency is not cached.
Compiler techniques are affine loop and data transformation,
used to optimize temporal and spatial locality aggressively.
When compiler techniques are used on the data, the data is
cached as in a conventional cache system. The simulation
results confirm that the NS have better performance
compared to systems with pure-hardware, pure-software, or
combined hardware/software non-selective techniques for
optimizing data locality, while using the same die area and
power consumption.

General Multiprocessor Compiler-Not-Assisted

The general multiprocessor compiler-not-assisted (GMN)
is a class where data localities and caching strategies are
determined solely in hardware and where the help of a
compiler is not necessary. The processor for which cache
system is created will be used in multiprocessor environment.

4. The Split Data Cache in Multiprocessor System

Sahuquillo and Pont in [5] proposed extension of the STS

cache system, presented in [2], in order to adapt it for the use

in shared multiprocessor environment; the research was
conducted in the School of Electrical Engineering at the
University of Belgrade with the intention of studying the
advantages over the conventional cache systems. The cache
system is basically the same as the STS system with a couple
of differences; a tag for the data is kept until the data eviction
and when the tag for data is changed, the data is relocated to
another sub-cache system. A snoop controller is added to the
both sub-cache systems, as depicted in Figure 4. The
extension of the Berkeley cache coherence protocol is used in
conjunction to the STS cache system. When a hit occurs, the
sub-cache system sends signal to another sub-cache system to
stop it from accessing the bus and supplies the processor with
the requested data. When a miss occurs, the spatial sub-cache
system requests the data on the bus and the requested data is
allocated in the spatial sub-cache system. The both sub-cache
systems snoop the bus for invalidation signal. Simulation
shows that the STS system in multiprocessor environment
can achieve the same performance as the conventional cache,
while occupying smaller space on the die and using less
power. Enabling tag history for the data being evicted can
avoid “cold start” period when the data is being accessed after
eviction, especially when eviction of shared block happens as

Figure 5: The Northwestern solution. Legend: CPU -- central processing
unit, CC -- conventional cache, SB -- small FIFO buffer, SF -- unit for
detection of data frequency access and if data exhibit spatial locality , MM --
main memory, MP -- multiplexer. Description: The cache system consists of
the conventional cache and small FIFO buffer. The SF unit controls where
data is fetched. Explanation: The CPU can turn on/off the SF. If the SF is
turned off software techniques for optimizing data locality are used and data
are cached into the conventional cache. If the SF is turned on hardware
technique for optimizing data locality is used and data are cached into the
conventional cache or the small buffer if data has highly access frequency or
they exhibit spatial locality. Implication: Dedicated instructions are
necessary to turn on/off the SF.

Figure 4: The Split Data Cache system in Multiprocessor system. Legend:
BUS – system bus; CPU – central processing unit; SC – spatial sub-cache
with prefetching mechanism; TC L1 and TC L2– the first and second level of
the temporal sub-cache; TAG – unit for dynamic tagging/retagging data;
SNOOP – snoop controller for cache coherence protocol. Description: The
cache organization is divided into two sub-cache systems: the temporal and
the spatial sub-cache system. Each sub-cache system has the associated
snoop controller. Explanation: The cache system is split into a “temporal”
sub-cache system and “spatial” sub-cache system to allow use of different
caching strategies for the different types of locality which data exhibit. The
data block is cached in different sub-caches system based on an associated
tag. The tag for each data block is determined by previous accesses to the
data block that happened after last time the block is fetched. Implication:
The data can change sub-cache systems in which are stored. The data is
fetched only by the spatial sub-cache system.

a result of write operation by another processor.

General Multiprocessor Compiler-Assisted

The general multiprocessor compiler-assisted (GMC) is a
class that does not include any existing implementations to
the best of our knowledge. The GMC class makes full sense,
so the GMC research avenue represents a potentially fruitful
research target [11].

Special Uniprocessor Compiler-Not-Assisted

The special uniprocessor compiler-not-assisted (SUN) is a

class of proposed solutions where data localities and caching
strategies are determined solely in hardware and where the
help of a compiler is not necessary. The cache systems
belonging to this group are optimized for special-purpose
applications.

5. The Reconfigurable Split Data Cache

Naz, Kavi, Oh, and Foglia in [6] present the reconfigurable

split data cache (RSDC) architecture for embedded systems,
in order to accomplish a better utilization of die area; the
research was performed at the University of North Texas.
The RSDC system detects spatial or temporal locality that
data exhibit and fine-tunes cache policies according to that
type. The cache is divided into the array cache, for exploiting
spatial locality, the scalar cache, for exploiting temporal
locality, and the victim cache, for lowering the associativity
of the scalar cache, as depicted in Figure 6. Every sub-cache
system is divided into multiple partitions, proposed in [7],
which can be used for purposes other than conventional
caching (instruction reuse, as lookup tables, prefetching, etc.),
or can be turned off to reduce power consumption. Turning
off some parts of cache system can result in 50% reduction in
power consumption. Reconfiguration of the cache partitions
is used in applications that have lower memory requirements
and can benefit from specialized hardware for non-standard
processor activity. Paper [7] concludes that implementing
reconfigurable partitions requires only a small amount of
additional logic and additional wiring, while the cache access
time is increased by a relatively small percentage. Inducing
data locality based on data-type can generate misclassified
data, because the array data can exhibit temporal locality.

Special Uniprocessor Compiler-Assisted

The special uniprocessor compiler-assisted (SUC) is a class

of proposed solutions where data localities and caching
strategies are determined in software and hardware. The
cache systems belonging to this group are optimized for
special-purpose applications.

6. The Data-type Dependent Cache for MPEG
Application

Cucchiara, Prati, and Piccardi in [8] propose the data-type
dependent cache for MPEG applications (DDM), for effective
use of 2D spatial locality image data; the research was done
at the Universita di Modena with the intention of achieving
better performance for multimedia applications, than when
using the conventional cache systems. The compiler classifies
each memory reference as either addressing image or non-
image data. Based on the class of data, different prefetching
algorithms are used to cache data. Information about image
data-type, address range, and row size, is stored in a
dedicated memory table, using a special procedure call. This
information is used every time, when memory reference
occurs, for deciding which prefetching mechanism will be
used. Authors proposed a new prefetching algorithm, called
Neighbor prefetching, for exploiting 2D spatial locality and a
standard One-Block-Lookahead (OBL) prefetching algorithm
for exploiting spatial locality of the non-image data. In Figure
7 is illustrated the organization of the cache system. The
DDM can be used for applications characterized by a
substantial amount of image and video processing. The
compiler classifies the data based on variable declarations
generated by a programmer and this approach can miss-

Figure 6: The Reconfigurable Split Data Cache. Legend: AC – array cache,
SC – scalar cache, VC – victim cache, CSR – cache status register, X – unit
for determining data-type, L2 – second level cache, MP – multiplexer.
Description: The cache is divided into three sub-caches systems: the array
cache, for exploiting spatial locality, the scalar cache for exploring temporal
locality, and the victim cache for lowering associativity of the scalar cache.
Explanation: The unit X determines type of data that is being fetched and
place data into a proper sub-cache system (scalar or array cache). Data is
placed in the victim cache only when the block containing that data is evicted
from the scalar cache. In the CSR is the information about which partition is
used for conventional caching and which one is not. Implication: Checking
which partition is used for conventional caching requires additional logic
and wiring in sub-cache systems, and increases access time to sub-cache
systems.

classify data, if the programmer uses a non-appropriate
programming style. The compiler requires a specialized
instruction set to access memory table. Inclusion of another
sub-cache system for exploiting temporal locality of scalar
data can potentially improve the overall performance of the
DDM approach. The die space area and power consumption
are not considered in [8].

Special Multiprocessor Compiler-Not-Assisted

The special multiprocessor compiler-not-assisted (SMN) is

a class of proposed solutions where data localities and
caching strategies are determined solely in hardware and
where the help of a compiler is not necessary. The cache
systems belonging to this group are optimized for special-
purpose applications in multiprocessor environment.

7. The Texas Solution

Adamo et al. present in [9] similar solution to the RSDC

for use in embedded multiprocessor systems, named Texas
solution (TS) cache system; the research was performed at the
University of North Texas. The data is divided based on type
and placed in different sub-cache systems. The TS cache has
two sub-cache systems: the array sub-cache system for
storing array data and the scalar sub-cache system for storing
scalar data, as illustrated in Figure 8. The small fully
associative FIFO buffer is associated with the array sub-cache
system to enable hardware based prefetching. When a miss
occurs, the missed block is fetched into the array sub-cache
system and also the next block is fetched into buffer to avoid
cache pollution by displacing needed data in an untimely
manner. Authors have showed that the TS cache can deliver
same performance as a conventional cache while occupying
less die area, making it good choice for first level cache in

embedded multiprocessor systems on chip and leaving more
space for processor cores. Inducing data locality based on
data-type can generate misclassified data, because the array
data can exhibit temporal locality. Determining the best cache
coherence protocol is important, because the cache coherence
protocol can greatly affect performance of cache system.

Special Multiprocessor Compiler-Assisted

The special multiprocessor compiler-assisted (SMC) is a

class of proposed solutions where data localities and caching
strategies are determined in software and hardware. The
cache systems belonging to this group are optimized for
special-purpose applications in multiprocessor environment.

8. The Time-Predictable Data Cache

Schoeberl, Puffitsch, and Huber proposed in [10] the time-

predictable (TP) data cache for on-chip multiprocessor
system, built from the Java processor (JOP) cores; the
research was done at the Vienna University of Technology
with intention of enabling the tight worst-case execution time
analysis for real-time applications. The TP cache system
stores scalar data in different sub-cache systems, based on
data memory access type, while array data is being bypassed.
The TP cache system is divided into two sub-cache systems:
the fully associative sub-cache system with LRU replacement
and a direct mapped cache, as depicted in Figure 9. The

Figure 8: The Texas solution cache. Legend: AC – array cache; SC – scalar
cache; FB– FIFO buffer; X – unit for determining data-type; L2 – second
level cache; MP – multiplexer. Description: The cache is divided into three
sub-caches systems: the array cache, for exploiting spatial locality, the
scalar cache for exploring temporal locality, and the FIFO buffer for array
data prefetching. Explanation: The unit X determines type of data that is
being fetched and place data into a proper sub-cache system (scalar or array
cache). Data is placed in the FIFO buffer only when a miss occurs on the
array data and the fetched data is in the next block. Implication: Because
scalar data are not fetched in the array sub-cache system, the FIFO buffer is
flushed less frequently and provides a decrease in the number of misses in
the array sub-cache system.

Figure 7: The data-type dependent cache for MPEG applications. Legend:
UC – unified data cache; MT – memory table for image information; NA –
unit for prefetching data by the Neighbor algorithm; OBLA - unit for
prefetching data by the OBL algorithm; MM – main memory. Description:
The cache organization is not divided into sub-cache systems. Different types
of locality exhibited by data are exploited by different prefetching units.
Explanation: Image data is pre-fetch using NA, in order to exploit 2D
spatial locality, and non-image data are pre-fetched using the OBLA unit, in
order to exploit standard spatial locality. The MT unit contains information
about the type of locality exhibited by data, stored by compiler. Implication:
A specialized instruction set is required to change content of the MT.

compiler divides data into several ways based on data
memory access type. Constant and static data are cached in
the direct mapped sub-cache system, while dynamic data
(located on the heap) are cached in the associative cache. The
authors argue that splitting data cache simplifies the cache
coherence protocol and that reduces its limiting factor on
multiprocessor system scalability, because it can detect
shared data and enforce data invalidation only when it is truly
necessary. Bypassing array data can have impact on
performance, because spatial locality that array data exhibit is
not exploited. The authors show that this approach is also
able to reduce the complexity (die area occupied by the
design) and consequently power consumption, compared to
conventional approach.

CONCLUSION

Essentially, the purpose of this survey was to provide an
extensive coverage of data access prediction patterns and
utilization principles to hide memory access latency. A huge
amount of research effort was spent to develop the cache
systems based on the dual data cache approach. We tried to
give a broad overview of the existing approaches, in term of
applications for which the cache system is being designed. As
processors continue to be used in an increasing number of
application domains, it is important to ensure that cache
systems that can use a significant fraction of the on-chip
transistors are reduced in size as much as possible, while
retaining a suitable performance. We tried to emphasize
which solutions accomplish this goal. In embedded
computing power consumption is also a limiting factor, and

we specially pointed to designs with low power consumption.
Proposed solutions for multiprocessor systems offer

possibilities for reducing power consumption and the used die
area compared to conventional cache systems. Some of them
are uniprocessor solutions adapted for use in multiprocessor
systems with a small change in cache coherence protocol
used for conventional cache systems. The TA data cache is
designed specifically for use in multiprocessor systems and
even simplifies the cache coherence protocol and that reduces
its limiting factor on multiprocessor system scalability

Large amounts of algorithms for determining data access
pattern have been proposed. Some of them are simple, some
are more complex, but all of them have more or less problems
with dealing with some specific data access patterns. We feel
that through selective combination, some of these algorithms,
i.e., dual data cache systems, can achieve better results.

 Beside the use of this survey for designing conventional
computer systems, we believe that this survey can open new
horizons for designing computer systems with a transactional
memory. Especially the cost of abort procedures in systems
with the transactional memory can be reduced using a dual
data cache system.

REFERENCES

[1] A. Gonzalez, C. Aliagas, and M. Mateo, “Data cache with multiple
caching strategies tuned to different types of locality,” Proceedings
International Conference on Supercomputing, July 1995, pp. 338-347

[2] V. Milutinovic, M. Tomasevic, B. Markovic, M. Tremblay, “The split
temporal/spatial cache: initial performance analysis,” Proceedings of
the SCIzzL-5, Santa Clara, California, USA, March 1996, pp. 72-78.

[3] V. Milutinovic, M. Tomasevic, B. Markovic, M. Tremblay, “The split
temporal/spatial cache: initial complexity analysis,” Proceedings of the
SCIzzL-6, Santa Clara, California, USA, September 1996, pp. 89-96.

[4] G. Memik, M. Kandemir, M. Haldar, A. Choudhary, “A selective
hardware/compiler approach for improving cache locality,”
Northwestern University Technical Report CPDC-TR-9909-016,
Evanston, Illinois, USA, 1999.

[5] J. Sahuquillo, A. Pont, “The split data cache in multiprocessor systems:
an initial hit ratio analysis,” Proceedings of the Seventh Euromicron
Workshop on Parallel and Distributed Processing, February 1999, pp.
27-34.

[6] A. Naz, K.M. Kavi, J. Oh, and P. Foglia, “Reconfigurable split data
caches: a novel scheme for embedded systems,” Proceedings of the
2007 ACM Symposium on Applied Computing (SAC), March 2007, pp.
707-712.

[7] P. Ranganathan, S. Adve, N.P. Jouppi, “Reconfigurable caches and
their application to media processing,” Proceedings of the 27th
International Symposium on Computer Architecture, June 2000, pp.
214-224.

[8] R. Cucchiara, A. Prati, M. Piccardi, “Data-type dependent cache
prefetching for MPEG applications,” 21st IEEE International
Performance, Computing, and Communications Conference, April
2002, pp. 115-122.

[9] O. Adamo, A. Naz, T. Janjusic, K.M. Kavi, and C. Chung, “Smaller
split L-1 data caches for multi-core processing systems,” Proceedings
of ISPAN, December 2009, pp.74-79.

[10] M. Schoeberl, W. Puffitsch, and B. Huber, “Towards time-predictable
data caches for chip-multiprocessors,” Proceedings of SEUS,
November 2009, pp. 180-191.

[11] Z. Sustran, “Comparing two multiprocessor oriented compiler-assisted
approaches to general purpose processing: the case of abort in
transactional memory system,” Technical Report of FP7 BalCon
Project (Ph.D. Thesis in Preparation), Thessaloniki, Greece, September
2011.

[12] M. Valero, “The DDC cache,” Invited lecture at the UPC, Barcelona,
Spain, December 1994.

Figure 9: The Time-Predictable data cache. Legend: MM – main memory;
JOP – Java processor; MP – multiplexer; LRU – fully associative sub-cache
system with LRU replacement; DM – direct mapped sub-cache system; DAT
– unit for determining data memory access type. Description: Constant and
static data are stored in the direct mapped sub-cache system. The LRU stores
the object header and object fields. Array data is not cached. Explanation:
The complier places different type of data into different memory areas. The
DAT unit determines whether to cache data and where to cache data.
Implication: This implementation allows a simplified cache coherence
protocol that can invalidate data only when a write to shared data occurs.

